DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
PUNJABI UNIVERSITY, PATIALA

FOUR YEAR B.TECH PROGRAMME

Teaching Scheme
(Third to Eight Semester)

(Batch 2017)
B. TECH SECOND YEAR
COMPUTER SCIENCE & ENGINEERING

(Batch 2017)
Session (2018-19)

SCHEME OF PAPERS

THIRD SEMESTER (COMPUTER SCIENCE & ENGINEERING)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CPE-201</td>
<td>Digital Circuits & Logic Design</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>2.</td>
<td>CPE-202</td>
<td>Object Oriented Programming using C++</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>3.</td>
<td>CPE-203</td>
<td>Data Structures</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>4.</td>
<td>CPE-204</td>
<td>Computer Networks</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>5.</td>
<td>CPE-205</td>
<td>Discrete Mathematical Structures</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>6.</td>
<td>HSS-201</td>
<td>Management Practice & Organization Behaviour and Business Intelligence</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>7.</td>
<td>CPE-252</td>
<td>Object Oriented Programming using C++ Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>8.</td>
<td>CPE-253</td>
<td>Data Structures Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>9.</td>
<td>CPE-254</td>
<td>Computer Networks Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>10.</td>
<td>**</td>
<td>Punjabi</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>21</td>
<td>2</td>
<td>6</td>
<td>22</td>
</tr>
</tbody>
</table>

Total Contact Hours = 29

CPE-252, CPE-253 and CPE-254 are practical papers only. There will not be any theory examination for these papers.

** In addition to above mentioned subjects, there will be an additional course on Punjabi as a qualifying subject.
Department of Computer Science & Engineering
Punjabi University, Patiala.

General Instructions to the Paper Setters
(Common for B.Tech. in Computer Science & Engineering, Electronics and Communication Engineering, Mechanical Engineering, Civil Engineering and Integrated B.Tech/MBA Branches)

Pattern of Question Paper
TITLE OF SUBJECT (CODE----)
Bachelor of Technology (Branch) Section: ………….
End Semester Exam

TIME ALLOWED: 3 Hour Roll. No………..
Maximum Marks: 50
Pass Marks : 20

Note:- Section C is compulsory. Attempt any six questions selection three questions from each section A & B.

Section-A (From Section A of the syllabus)
Q1. ...
Q2. ...
Q3. ...
Q4. .. 3x5
Q5. ...

Section-B (From Section B of the syllabus)
Q6. ...
Q7. ...
Q8. ...
Q9. .. 3x5
Q10. ..

Section-C (From whole syllabus)
Q11
a)..
b)..
c)..
d)..
e)...
f)...
g)...
h)...
i)...
j)... 10x2=20

Note for the paper setter:
1. Total numbers of questions to be set are Eleven (11) as per the above format.
2. There will be five questions in each of the Sections A and B. Each question will be of five (05) marks. However, a question may be segregated into subparts. Candidates will be required to attempt SIX questions by selecting three Questions from each of the Sections A & B.
3. Section C is compulsory and contains ten (10) sub-parts each of two (2) marks.
4. The maximum limit on numerical problems to be set in the paper is 35%.
5. The paper setter shall provide detailed marking instructions and solutions to numerical problems for evaluation purpose in the separate white envelopes provided for solutions.
6. The paper setters should seal the internal & external envelope properly with signatures & cello tape at proper place.
7. Log tables, charts, graphs, Design data tables etc. should be specified, whenever needed.
8. Use of non-programmable calculator if required should be clearly specified.
CPE-201 DIGITAL CIRCUITS & LOGIC DESIGN

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Course Objectives:

- To acquire the basic knowledge of digital logic levels and application of knowledge to understand digital electronics circuits.
- To prepare students to perform the analysis and design of various digital electronic circuits.
- Able to perform the conversion among different number systems; Familiar with basic logic gates -- AND, OR & NOT, XOR, XNOR; Independently or work in team to build simple logic circuits using basic.
- Understand Boolean algebra and basic properties of Boolean algebra; able to simplify simple Boolean functions by using the basic Boolean properties.
- Able to design simple combinational logics using basic gates. Able to optimize simple logic using Karnaugh maps, understand "don't care".
- Familiar with basic sequential logic components: SR Latch, D Flip-Flop and their usage and able to analyze sequential logic circuits.

SECTION-A

Number Systems and Codes: Binary, Octal and Hexadecimal number systems, Binary to decimal, Decimal to binary, Octal and hexadecimal to binary and binary to octal and hexadecimal conversions, BCD code, Gray code, Alphanumeric codes, Parity method for error detection.

Logic gates and Boolean Algebra: OR, AND and NOT operations and gates, NOR, NAND, XOR and XNOR operations and gates, Evaluating logic circuit outputs, Implementing circuits from Boolean expressions. Boolean theorems, DeMorgan's theorem, universality of NAND and NOR gates, IEEE/ANSI standard logic symbols.

Combinational Logic Circuits: Sum of product form, Product of sum form, Simplification of Boolean functions using algebraic and Karnaugh map methods. Half adder, Full adder, Half subtractor, full subtractor circuits, Multiplication operation and ALU.

Combinational digital IC packages: Multiplexers, De-multiplexers, Code converters, Combinational logic circuits. Some examples of Boolean gate ICs and ICs implementing different combinational logic circuits.

SECTION-B

Sequential Circuits: RS, JK, D and T flip-flops circuits and their conversions, Serial and parallel counters and shift registers, Universal shift registers, Some examples of counter and shift register ICs.

Logic families and digital ICs: Characteristics of digital ICs, Classification of different logic families.

Memories: Semi-conductor memories, ROM and RAM, ROM using diodes, BJTs, and FETs. RAM cell. Memory organization and expansion. An idea about other types of memories.

Recommended Books:

2. M.M. Mano, " Digital Design" Mcgraw Hill, USA
4. Malvino Leach, " Digital Principles and Applications" MCgraw Hill, USA
Course Objectives:
The learning objectives of this course are:
- To understand how C++ improves C with object-oriented features.
- To learn the syntax and semantics of the C++ programming language.
- To learn how to design C++ classes for code reuse.
- To learn how to implement copy constructors and class member functions.
- To understand the concept of data abstraction and encapsulation.
- To learn how containment and inheritance promote code reuse in C++.
- To learn inheritance, virtual functions, polymorphism, templates and exception handling.

SECTION - A
Introduction: - Review of basic concepts (Data types, tokens, operators, arrays, strings, structure). Concepts of OOPS, Comparison between procedural and OOPS, Elements of OOPS, its paradigm, its merits and demerits, functions, function overloading and function.

Classes and Objects :- Classes, creating a class, accessing class members, memory allocation for objects, array of objects, static objects, friend class, empty classes, nested classes, abstract classes and container class.

Constructor and Destructor :- Its need, Types of constructor- Default, Copy, Multiple, Dynamic, Destructor, Constructor and Destructor with static members, Order of execution of constructor and destructor.

Operator Overloading and type Conversion :- Definition, Rules for overloading, Overloading of unary and binary operators, Overloading NEW and DELETE operators, Type conversion- Basic type to class type, class type to basic type, class to class type.

SECTION - B
Inheritance: - Virtual base class, types of inheritance, typing conversions and visibility

Polymorphism: - Virtual functions, Virtual destructors, Concept of binding- early and late, Virtual functions, Pure virtual functions, Polymorphism.

Exception Handling: - Basics of exception handling, Exception handling mechanisms, Throwing mechanisms, Catching mechanisms

Pointers and dynamic memory management :- Understanding pointers, accessing address of a variable, declaring and initialization, pointer arithmetic, pointer to pointer, pointer to function, pointer to array, array of pointers, pointer to object, this pointers, null pointers, dangling pointers and memory leak.

Managing Data Files: - File streams, Hierarchy of file streams, Reading/Writing of files, accessing records randomly and sequentially and updating files.

Recommended Books:
3. Satzinger, Object Oriented Analysis and Design with the unified process, Cengage Learning (Thomson)
CPE -203 DATA STRUCTURES

COURSE OBJECTIVES:
- To impart the basic concepts of data structures and algorithms
- To understand concepts about searching and sorting techniques
- To understand basic concepts about stacks, queues, lists, trees and graphs
- To understanding about writing algorithms and step by step approach in solving problems with the help of fundamental data structures

SECTION-A

Basic Data Structures and Operations on them: Arrays, Stacks and Queues and Their Applications, Linked and Sequential Representation. Linked List, Representation of Linked List, Multi-Linked Structures

Searching and Sorting: use of Various Data Structures for Searching and Sorting, Linear and Binary Search, Bubble Sort, Insertion Sort, Shell Sort, Selection Sort. Merge Sort, Radix Sort, Quick Sort.

Hashing: Introduction to hash table, hash function, resolving collision by chaining and open addressing, deleting items from a hash table.

SECTION-B

Trees: Definitions and Basic Concepts, Linked Tree Representation, Representations in Contiguous Storage, Binary Trees, Binary Tree Traversal, Searching, Insertion and Deletion in Binary Trees, Binary Search Tree, Heap and Heap Sort Algorithm, AVL Trees.

Graphs and Their Application, Sequential and Linked Representation of Graph-Adjacency Matrix, Operations on Graph, Traversing a Graph, Dijkstra's Algorithm for Shortest Distance, DFS and BFS, Minimal Spanning Tree.

File Organization: Sequential, Relative, Index Sequential.

Recommended Books:

2. Fundamentals of Data Structures, CBS Publishers and Distributors, Delhi, Ellis Horwitz and Sartaj Sahni.
5. Data Structure using (C & C++), Sanjeev Kumar, Khanna Publishers.
CPE-204

COMPUTER NETWORKS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Course Objectives
At the end of the course, the students will be able to:

- Build an understanding of the fundamental concepts of computer networking.
- Familiarize the student with the basic taxonomy and terminology of the computer networking area.
- Introduce the student to advanced networking concepts, preparing the student for entry Advanced courses in computer networking.
- Allow the student to gain expertise in some specific areas of networking such as the design and maintenance of individual networks.

SECTION-A

Introduction, history and development of computer networks, Types of computer networks: LAN, MAN, WAN, broadcast and point to point networks, Network topologies,

Transmission media: Twisted Pair, Co-axial Cables, Fiber Optics, Wireless Transmission: Radio and Microwave and Infrared Transmission

SECTION-B

Network layer: IP Addressing, IPV4 header, Fragmentation, Routing algorithms:-Shortest Path Routing, Flooding, Distance Vector Routing and Link State Routing, Introduction to Congestion, Congestion Control.

Transport layer: Introduction to Elements of Transport Protocols UDP, TCP

Application layer: Electronic-mail, WWW, Domain Name System, SMTP, HTTP.

Recommended Books:

CPE-205
DISCRETE MATHEMATICAL STRUCTURE

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Course Objectives

Students will be able to:

- Write an argument using logical notation and determine if the argument is or is not valid.
- Demonstrate the ability to write and evaluate a proof or outline the basic structure.
- Understand the basic principles of sets and operations in sets.
- Prove basic set equalities.
- Demonstrate different traversal methods for trees and graphs.
- Model problems in Computer Science using graphs and trees.

SECTION-A

Relations and Functions: Binary relations, composition of relations; Equivalence relations and partitions; partially ordered sets and Lattice Hasse diagrams; Functions, Injection, Surjection and Bisection; Composition of functions. Recursion and Recurrence Relations: Polynomials and their evaluation, recursion, iteration, sequences and discrete functions, Recurrence Relations, generating functions.

Graphs: Introduction to graphs, Graph terminology, Representing Graphs and Graph Isomorphism, Connectivity. Mathematical Logic: Statement and notations, normal forms, theory and inference for statement and calculus, predicate calculus, inference theory for predicate calculus. Graph Theory: Directed and undirected graphs and their matrix representations; Euclidean paths and cycles; Hamiltonian paths and cycles; shortest paths, Euler’s formula.

SECTION-B

Boolean Algebra: Basic Circuits and theorems, Boolean expressions; Logic gates and relation of Boolean functions. Induction and Recursion: Principle of Mathematical induction; Recursive definition.

Algebraic Structures: Introduction to algebraic structures, semi groups; Groups and subgroups; Homomorphism and homomorphism of groups, Lagrange theorem.

Recommended Books:

HSS-201 MANAGEMENT PRACTICE & ORGANIZATION BEHAVIOUR AND BUSINESS INTELLIGENCE

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

SECTION-A

SECTION-B

Recommended Books:

3. Laurie Mullins, Management and Organisation Behaviour, 7/e, Pearson Education.
5. Stephen P. Robbins, Mary Coulter and Neharika Vohra, Management 10/e, Pearson Education.
10. L.M.Prasad, Principles & Practice of Management, Sultan Chand & Sons N Delhi
CPE - 252 OBJECT ORIENTED PROGRAMMING USING C++ LAB

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

List of Experiments:

1. Write a program to illustrate the working of different iterative controls.
2. Write a program to illustrate the use of conditional statements.
3. Write a program to illustrate difference between call by reference and call by value.
4. Write a program to illustrate use of classes and objects.
5. Write a program to illustrate the use of constructors and destructors in object oriented language.
6. Write a program to illustrate the use operator overloading in object oriented language.
7. Write a program to illustrate the use of inheritance and type of inheritance in object oriented language.
8. Write a program to illustrate the use virtual function in object oriented language.
9. Write a program to illustrate the use runtime polymorphism in object oriented language.
10. Write a program to illustrate the use of File Stream operation in object oriented language.
1. Write a program to check whether a string is palindrome or not
2. Write a program to extract substring from given string.
3. Write a program to implement stack using arrays.
4. Write a program to implement queues using arrays.
5. Write a program to sort a given list of number using following algorithm.
 1. Bubble sort
 2. Insertion sort
 3. Selection sort
 4. Quick sort
 5. Radix sort
6. Write a program to implement linear and binary search algorithm.
7. Write a program to create a linked list and perform following operations:
 1) Insert element at beginning.
 2) Insert element at end.
 3) Insert element at given position.
 4) Delete element from beginning
 5) Delete element at end.
 6) Delete element from given position.
8. Take a list of number and create a sorted linked list from given list
9. Implement stack using linked representation.
10. Implement queue using linked representation.
CPE-254 COMPUTER NETWORKS LAB

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

List of Experiments

1. Identification and study of various network components such as connectors: BNC, RJ-45, I/O box Cables: Co-axial, twisted pair, UTP, Fiber Optic, NIC (network interface card), Switch, hub and router

2. Study of different types of Network Cables and practically implementing the cross-wired cable and straight through cable using clamping tool.

3. To implement and test different network related commands in Windows Operating System (ipconfig, ifconfig/all, ping, tracert, etc.).

4. Installation and Configuration of Peer to peer and client Server based Networks

5. To Share files, printers etc. between different machines.

6. To Study of Network IP addressing schemes and learns to how to configure IP configuration.

7. To learn basic introduction of Switching, TCP/IP and Routing using Packet Tracer.

8. To study the fundamental differences between hub, switch and router.

Hardware Requirements

1. NIC card
2. RJ-45 Connector
3. Hub
4. Clamping Tool
5. Switch
6. Twisted Pair Cable
7. Co-axial Cable

Software Requirement

Packet Tracer

Network Management Software
For Other State Students of B. Tech & 6 Yr. Engineering Management Integrated Program Only

中华人民共和国教育部

大学

Punjabi University, Patiala

Four Year B.Tech (Computer Sc. & Engg.) Batch 2017
BOS: 2018

Punjab University, Patiala Four Year B.Tech (Computer Sc. & Engg.) Batch 2017 BOS: 2018
Page 12 of 74 Batch: 2017 (CSE)
1. Punjab University, Patiala

Four Year B.Tech (Computer Sc. & Engg.) Batch 2017

BOS: 2018

Page 13 of 74
B. TECH SECOND YEAR
COMPUTER SCIENCE & ENGINEERING
(Batch 2017)
Session (2018-19)

SCHEME OF PAPERS

FOURTH SEMESTER (COMPUTER SCIENCE & ENGINEERING)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CPE-206</td>
<td>Visual Programming using VB.Net</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>2.</td>
<td>CPE-207</td>
<td>Software Engineering</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>3.</td>
<td>CPE-208</td>
<td>Operating Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>4.</td>
<td>CPE-209</td>
<td>Computer Graphics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>5.</td>
<td>CPE-210</td>
<td>Computer System Architecture</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Elective – I*</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>7.</td>
<td>CPE-256</td>
<td>Visual Programming using VB.Net Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2.0</td>
</tr>
<tr>
<td>8.</td>
<td>CPE-258</td>
<td>Operating Systems Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>9.</td>
<td>CPE-259</td>
<td>Computer Graphics Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td>**Environment and Road Safety Awareness</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Total 19 2 8 22
Total Contact Hours = 29

ELECTIVE SUBJECTS – I *

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CPE-211</td>
<td>System Programming</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>2.</td>
<td>CPE-212</td>
<td>E-Commerce</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>3.</td>
<td>CPE-213</td>
<td>Building Enterprise Applications</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

*Choose any one from the list. Elective under Massive Open Online Courses (MOOCS) available on SWAYAM platform of Govt. of India offered through online mode. The subjects which students can opt from MOOCS will be notified by the department semester wise time to time

CPE-256, CPE-258 and CPE-259 are practical papers only. There will not be any theory examination for these papers.

** In addition to above mentioned subjects, there will be an additional course on Environment and Road Safety Awareness as a qualifying subject.
General Instructions to the Paper Setters

(Common for B.Tech. in Computer Science & Engineering, Electronics and Communication Engineering, Mechanical Engineering, Civil Engineering and Integrated B.Tech/MBA Branches)

Pattern of Question Paper

<table>
<thead>
<tr>
<th>TITLE OF SUBJECT (CODE----)</th>
<th>Bachelor of Technology (Branch) Section:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>End Semester Exam</td>
</tr>
</tbody>
</table>

TIME ALLOWED: 3 Hour

<table>
<thead>
<tr>
<th>Maximum Marks:</th>
<th>Roll. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

Pass Marks: 20

Note: Section C is compulsory. Attempt any six questions selection three questions from each section A & B.

Section-A (From Section A of the syllabus)

Q1.	
Q2.	
Q3.	
Q4.	3x5
Q5.	

Section-B (From Section B of the syllabus)

Q6.	
Q7.	
Q8.	
Q9.	3x5
Q10.	

Section-C (From whole syllabus)

| Q11 | a)............. |
| b)............. |
| c)............. |
| d)............. |
| e)............. |
| f)............. |
| g)............. |
| h)............. |
| i)............. |
| j)............. | 10x2=20 |

Note for the paper setter:

1. Total numbers of questions to be set are Eleven (11) as per the above format.
2. There will be five questions in each of the Sections A and B. Each question will be of five (05) marks. However, a question may be segregated into subparts. Candidates will be required to attempt SIX questions by selecting three Questions from each of the Sections A & B.
3. Section C is compulsory and contains ten (10) sub-parts each of two (2) marks.
4. The maximum limit on numerical problems to be set in the paper is 35%.
5. The paper setter shall provide detailed marking instructions and solutions to numerical problems for evaluation purpose in the separate white envelopes provided for solutions.
6. The paper setters should seal the internal & external envelope properly with signatures & cello tape at proper place.
7. Log tables, charts, graphs, Design data tables etc. should be specified, whenever needed.
8. Use of non-programmable calculator if required should be clearly specified.
CPE-206 VISUAL PROGRAMMING USING VB.NET

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Course Objectives
The student will use Visual Basic.Net to build Windows applications using structured and object-based programming techniques. Students will be exposed to the following concepts and/or skills:

- Analyze program requirements
- Explain the structure of Visual Basic .NET projects.
- Design/develop programs with GUI interfaces
- Code programs and develop interface using Visual Basic .Net
- Perform tests, resolve defects and revise existing code
- Identify the purpose of each major controls of the Visual Basic .NET IDE.
- Explain basic programming practices that contribute

SECTION-A
Introduction to .NET: NET Framework features & architecture, CLR, Common Type System, MSIL, Assemblies and class libraries.
The VB.NET Language: Variables, Declaring variables, Data Type of variables, Scope & lifetime of a variable, Constants. Control flow statements: conditional statement, loop statement. MsgBox & InputBox. Arrays, types of array, String.
Working with Forms: Loading, showing and hiding forms, controlling One form within another.GUI Programming with Windows Form: Textbox, Label, Button, Listbox, ComboBox, Checkboxes, PictureBox, Radio Button, Panel, Scroll bar, Timer, ListView, Tree View, Toolbar, Status Bar. Their Properties, Methods and Events.
Common Dialog Controls: OpenFileDialog, SaveFileDialog, FontDialog, ColorDialog, PrintDialog.
MDI: SDI vs MDI, Designing menus, Adding Menus.

SECTION-B
Procedures And Classes: Collections, Subroutines, Functions, Passing variable, Number of Argument, Optional Argument, Returning value from function, classes. Object & Classes, Namespaces, Error Handling, Debugging.
Using ADO.Net: Connection, Data Adapter, Data Sets, Data Commands, Advance Data Bound Controls, Introduction to Crystal Reports.
Building a custom window control: Adding new properties, methods and events, testing a control, enhancing existing controls.
Introduction to Database Concepts: Data independence, DBMS Architecture, components of a database system, Advantages and disadvantages of Database system, Schemas, Instances, ER Model.
Introduction to Relational Database Management System: DDL statements: Table Creation and Management: Create Alter, Drop and Rename Table, create view, DML statements: select, insert, update and delete. TCL statement: Commit, Rollback. Integrity Constraints in SQL: Primary key, Foreign Key, Not Null, Unique, Check, Basic SQL Query,

Note: This subject is common to all branches. Only basics of Database concepts and SQL are covered.

RECOMMENDED BOOKS:
2. Matthew MacDonald, “.NET Insight for VB Developers”
3. “Mastering in VB.Net”
4. “Using Microsoft Visual Basic .NET” by Brian Siler and Jeff Spotts, Pearson Education.
5. Prateek Bhatia, Database Management system, Kalayani Publishers
CPE-207 SOFTWARE ENGINEERING

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Course Objectives

- The program will prepare our students to be successful professionals in the field with solid fundamental knowledge of software engineering.
- Be successful professionals in the field with solid fundamental knowledge of software engineering
- Utilize and exhibit strong communication and interpersonal skills, as well as professional and ethical principles when functioning as members and leaders of multi-disciplinary teams
- Apply their foundations in software engineering to adapt to readily changing environments using the appropriate theory, principles and processes

SECTION-A

Introduction to Software Engineering: Software Problem, Software Engineering, Approach, Software process, Characteristics of Software Engineering Process, software Development models.

Software Project Planning: Cost estimation, cost estimation models, Project scheduling, Software Configuration management, Team Structure, Risk Management.

SECTION-B

Function oriented design: Design principles, Coupling Cohesion, Structured Design Methodologies

Object Oriented Design: OOAD, Classes and objects, inheritance and polymorphism, design notation and specification

Brief introduction to various standards related to Software Engineering

Coding: Top Down, bottom up approaches, structured programming, information hiding programming style, documentation,

Testing: Testing Fundamentals, White box testing, Black box testing, Functional testing, boundary value testing, cause effect, graphing.

Recommended Books:

1. Software Engineering Approach, By R. S Pressman
2. Software Engineering, SOMMERVILLE Pearson Education
3. An Integrated Approach to software Engineering. PANKAJ JALOTE
CPE-208 OPERATING SYSTEMS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Course objectives:
- To learn the fundamentals of Operating Systems.
- To learn the mechanisms of OS to handle processes and threads and their communication.
- To learn the mechanisms involved in memory management in contemporary OS.
- To gain knowledge on distributed operating system concepts that includes architecture, Mutual exclusion algorithms, deadlock detection algorithms and agreement protocols.
- To know the components and management aspects of concurrency management.
- To learn programmatically to implement simple OS mechanisms.

SECTION-A

Basic Functions and Concepts of Operating Systems: Concept of an operating system, batch system, Multi-programmed, Time sharing, Personal Computer System, Parallel system, Real time system, Network Operating System and Distributed Operating System.

SECTION-B

Memory Management: Logical and physical address space, Swapping, Contiguous memory Allocation: Memory Protection, Memory Allocation, Fragmentation, paging: basic method, Protection and shared pages, segmentation: basic method, hardware, Protection and sharing, virtual memory, Demand Paging, Page Replacement Algorithms ((FIFO, Optimal, LRU, LRU Approximation page replacement), Allocation of Frames, Thrashing.

Information Management: Files - file concept, file types, File attributes, file operations, access methods, allocation methods (contiguous, linked, indexed), directory structure free-space management (bit vector, linked list, grouping, counting).

Disk Management: Disk structure, Disk Scheduling (FCFS, SSTF, SCAN, C-SCAN, LOOK), Disk Management (Disk Formatting, Boot Block, Bad Blocks), Swap Space Management: Swap Space Use, Swap Space Location.

Case Studies: Brief introduction of Windows, UNIX and LINUX.

Recommended Books:

CPE-209 COMPUTER GRAPHICS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Course objectives:
- To provide comprehensive introduction about computer graphics system, design algorithms and two dimensional transformations.
- To make the students familiar with techniques of clipping, three dimensional graphics and three dimensional transformations.
- The computer graphics course prepares students for activities involving in design, development and testing of modeling, rendering, shading and animation.

SECTION-A

Raster Scan Conversion Algorithms: Line Drawing Algorithms (DDA & Bresenham’s), Circle Drawing Algorithms (Mid Point and Bresenham’s).

Two-Dimensional Geometric Transformations: Basic Transformations, (Translation, Rotation and Scaling) Matrix Representation and Homogenous Coordinates, Shear and Reflection Transformations, Composite Transformations.

Filling: Region filling Algorithms (Boundary Fill and Flood Fill).

SECTION-B

Windowing And Clipping: Viewing pipeline, viewing transformations. 2-D Clipping algorithms- Line clipping algorithms (Cohen Sutherland, Liang Barsky algorithm) Polygon clipping (Sutherland Hodgeman polygon clipping, Weiler and Atherton polygon clipping).

Three-Dimensional Geometric Transformations: Basic Transformations: (Translation, Scaling, Rotation) Composite transformations.

Projections: Parallel and Perspective.

Visible Surface Detection Methods: Depth Buffer Method, A-Buffer Method, Scan Line Method, Area Subdivision Method.

Shading: Gouraud and Phong Shading Algorithms, Properties of Bezier and B-Spline Curves.

Recommended Books:

2. Computer Graphics (Schaum Series) by Lipschutz (MC Graw Hill)
CPE-210 COMPUTER SYSTEM ARCHITECTURE

Course Objectives:

- To have a thorough understanding of the basic structure and operation of a digital computer.
- To discuss in detail the operation of the arithmetic unit including the algorithms & implementation of fixed-point and floating-point addition, subtraction, multiplication & division.
- To study the different ways of communicating with I/O devices and standard I/O interfaces.
- To study the hierarchical memory system including cache memories and virtual memory

SECTION-A

Introduction: Design of basic computer, Registers, Accumulator, Flags, Program Counter, Stack Pointer, Machine Instructions, Instruction Cycle, Machine Cycle, Components of CPU.

Register Transfer and Micro operations: Register transfer Language, Register transfer, Bus & memory transfer, Logic micro operations, Shift micro operation.

Micro program Control Organization: Control Memory Address Sequencing, Micro program Sequences, Microinstruction Formats, and Addressing modes.

Arithmetic Unit: Comparison and Subtraction of unsigned Binary Numbers, Addition, Subtraction, Multiplication Algorithm.

SECTION-B

Memory System: Memory - CPU interaction, Principle of locality (Temporal and Spatial).

Memory Organization: Interleaved Memory Organization, Memory Hierarchy, Main Memory, Virtual Memory, Cache Memory, Cache Organization (Direct, Fully Associative, Set Associative), Cache Coherence, Memory Management Hardware, Performance Considerations.

Input-Output Organization: I/O interfaces and Buses, I/O operations, Program driven Input-Output, Interrupt driven Input-Output, DMA, Priority Interrupt.

Pipeline Processing: Overview of Pipelining, Types of Pipelining, Hazards (Data, Control, Structural).

Computer Peripherals and Interfaces: Introduction to I/O buses: ISA, PCI, SCSI, EISA, Local bus, VESA Local bus, PCI bus, PCI Express, Accelerated graphics port bus.

Recommended Books:

2. Structured Computer Organization: Andrew S. Tanenbaum, Prentice Hall of India
1. Write windows applications to demonstrate control structures of VB.NET.
2. Write window applications to demonstrate various controls of VB.NET.
3. Write a Windows application that functions like a Mathematical Calculator.
4. Write a windows application that functions like a Stopwatch.
5. Write a Windows application demonstrating the use of string functions.
6. Write a Windows application demonstrating the use of Arrays.
7. Write a windows application that functions like a Notepad (using Menu Editor, Common Dialog Control, Textbox's properties).
8. Write a windows application demonstrating the use of ADO
9. Write a Windows application for building a user control.
10. Write a windows application demonstrating various MDI features supported in VB.NET.
11. Creation of tables, virtual tables and views in SQL.
12. Viewing the contents of data dictionary.
13. Insert, update, delete of rows tables in SQL.
14. Manipulation (Insert, Update, Delete) on Tables.
15. Adding constraints like: primary key, not Null, Foreign key.
CPE-258 OPERATING SYSTEM LAB

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Hardware Lab

List of Experiments:

1. Identification of various computer components: Motherboard, Processor, System buses, Expansion Buses and PC Power supplies Memories etc.
2. PC assembling

Operating Lab

List of Experiments:

1. Familiarization of UNIX/LINUX Environment.
2. Installation and Administration of UNIX/LINUX operating system.
3. Implementation of common commands of UNIX operating systems.
4. Working on vi editor using its different modes.
5. Redirection of input and output using Filters and Pipes.
7. Implementation of programs using shell scripts.

Recommended Books:

CPE-259 COMPUTER GRAPHICS LAB

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

OBJECTIVE

The students are required to do exercises on various computer graphics algorithms in either C/C++ Language. Implement following using various algorithms:

1. Line drawing
2. Line clipping
3. circle drawing
4. area clipping
5. drawing of some 2-D pictures
6. 2-D transformations: rotation, translation etc
7. Shading
8. Line Hiding

Finally design some Ads., Game etc using all the above or built in commands.
CPE-211 SYSTEM PROGRAMMING

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Course Objectives:
- Upon successful completion of the course, the student will be able to:
- Enumerate and explain the function of the common operating system kernel routines that are provided by an operating system and accessible from a systems programming language.
- Design, write, and test moderately complicated low-level programs using a systems programming language.
- Proficiently use a preprocessor to implement code that is portable between different computing platforms.
- Use operating system kernel calls from within a programming language to allocate/free virtual memory, initiate and synchronize multiple threads/processes, interact with the file system, set and respond to timers/interrupts.
- Implement routines that implement complex data structures which superimpose arrays, records, and references on unstructured blocks of memory.

SECTION-A

Introduction to systems software: Definition, features of system Programming, System Programming vs. Application Programming, type of system programs.

Assembler: Single pass assembler, two pass assembler and design procedure of an assembler.

SECTION - B

Macro processor: Macro language and its features, macro instructions, features of macro facility, implementation, one pass macro pre-processor, two pass macro pre-processor.

Compliers: Overview of compilation process, lexical analysis, syntax analysis, semantic analysis and intermediate code generation and code optimization techniques, complier vs. interpreter.

Linkers and loaders: Loader Scheme, Compile and Go Loader, Absolute Loader, Subroutine Linkage, Relocating Loaders, Direct Linking Loader.

Recommended Books:

Course Objectives:
- To introduce the concept of electronic commerce, and to understand how electronic commerce is affecting business enterprises, governments, consumers and people in general. In addition, we will study the development of websites using relevant software tools.
- Acquaint students with a fundamental understanding of the environment and strategies in the New Economy.
- Provide a fundamental understanding of the different types and key components on business models in the New Economy.
- Provide guiding principles behind the design and strategy of the customer web interface.
- Understand the traditional and new communication/marketing approaches that create competitive advantage in the New Economy.
- Provide insights on how to implement strategy in the New Economy.

SECTION-A
Network Infrastructure for E-Commerce: Internet and Intranet based E-commerce- Issues, problems and prospects, Network Infrastructure, Network Access Equipments, Broadband telecommunication (ATM, ISDN, FRAME RELAY). Building own website: Reasons for building own website, Benefits of website, Cost, Time, Reach, Registering a Domain Name, Web promotion, Target email, Banner Exchange, Shopping Bots.

SECTION-B

Electronic payment System, Introduction, Types of Electronic payment system, Payment types, Traditional payment, Value exchange system, Credit card system, Electronic funds transfer, Paperless bill, Modern payment cash, Electronic cash, online Banking, EDI Application in business, E-Commerce Law, Forms of Agreement, Govt. policies and Agenda.
Internet Marketing: The PROS and CONS of online shopping, The cons of online shopping, Internet marketing techniques, The E-cycle of Internet marketing, Personalization e-Commerce-Governance for India E-Governance of India, Indian customer EDI system, Service centre, Imports, Exports.

References:
2. Pete Lohsin, John Vacca “Electronic Commerce”, New Age International
3. Goel, Ritendra “E-commerce”, New Age International
5. Bajaj and Nag, “E-Commerce the cutting edge of Business”, TMH
CPE-213 BUILDING ENTERPRISE APPLICATIONS

Course Objectives:
- The course provides students
- With the basic concepts of ERP systems for manufacturing or service companies, and the differences among (Material Requirement Planning) MRP, MRP II, and ERP systems
- Apply the principles of ERP systems, their major components, and the relationships among these components
- With the knowledge of typical ERP systems, and the advantages and limitations of implementing ERP systems.
- To comprehend the technical aspects of ERP systems
- To be able to map business processes using ERP concepts and techniques.

SECTION-A

Introduction to ERP: Definition of ERP, characteristics of ERP, Impact of ERP

Functioning of ERP System: Value chain and supply chain, predecessor of ERP, ERP System and its Extensions.

ERP Architecture: Logical architecture, Physical IT architecture, mainframe architecture, client-server architecture, browser architecture.

SECTION-B

ERP Implementation: phases of ERP cycle, Model building strategy, functional fit analysis, Significance and methods of Risk analysis, Significance and methods of cost-benefit analysis.

Introduction - ERP and open source software, ERP and Corporate Governance, ERP and shared services, ERP criticism

Recommended Books:
2. “ERP: The Implementation Cycle”, Stephen Harwood
4. “Enterprise Resource Planning”, Mary Sumner
ENVIRONMENT & ROAD SAFETY AWARENESS

Time Allotted: 3 hours Total Marks : 100
Total Lectures: 50 Pass Marks : 35
Written Paper : 75 Marks
Field Work : 25 Marks

Instructions
The written paper will have two parts. First part will be of 25 marks it will contain 10 questions, the students will attempt 5 questions of five marks out of this part. The answer to these questions should not exceed 50 words each.

Part second will be of 50 marks and will contain 10 essay type questions. The candidates will attempt 5 questions out of this part and the answer to each question should not exceed 500 words. Each question will carry ten marks.

Unit 1: The Multidisciplinary nature of environmental studies
Definition, scope and importance, Need for public awareness (2 Lectures).

Unit 2 Natural Resources :
Renewable and non renewable resources:
Natural resources and associated problems. a) Forest resources: Use and over - exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people, b) Water resources: Use and over utilization of surface and ground water, floods, drought, conflicts over water, dams benefits and problems, c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies, d) Food Resources : World Food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging; salinity, case studies, e) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, Case studies, F) Land resources: Land as a resource, land degradation, man included landslides, soil erosion and desertification.
Role of an individual in conservation of natural resources; Equitable use of resources for sustainable lifestyles.

Unit 3: Ecosystems
Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids, Introduction, types, characteristic features, structure and functions of the following ecosystem:-Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) (6 lectures)

Unit 4: Biodiversity and its conservation
introduction - - Definition: species and ecosystem diversity, Biogeographically classification of India, Value of biodiversity: consumptives use, productive, social, ethical, aesthetic and option values, Biodiversity at global, National and local levels, India as a mega-diversity nation, Hot spots of biodiversity, Threats to biodiversity: Habitat loss, poaching of wildlife, man-wildlife conflicts, Endangered and endemic species of India, Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity. (8 Lectures)

Unit 5: Environmental Pollution
Definition : Causes, effects and control measures of:-Air Pollution, Water Pollution, Soil Pollution, Marine Pollution, Noise Pollution, Thermal Pollution, Nuclear Hazards, Solid waste Management Causes, effects and control measurers of urban and industrial wastes., Role of and individual in prevention of pollution, Pollution case studies, Disaster management : floods, earthquake, cyclone and landslides. (8 Lectures)

Unit 6: Social Issues and the Environment
From Unsustainable to Sustainable development, Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people; its problems and concerns Case studies, Environmental ethics: Issues and possible solutions - Climate change, global warning, acid rain, ozone layer depletion, nuclear accidents and holocaust, Case studies Wasteland reclamation, Consumerism and waste products., Consumerism and waste products, Environment Protection Act, Air (Prevention and Control of Pollution) Act, Water...

(7 Lectures)

Unit 7: Human Population and the Environment

Unit 8: Field Work
Visit to a local area to document environmental areas, river/ forest/ grassland/ hill/ mountain, Visit to a local polluted site - Urban/ Rural/ Industrial/ Agriculture, Study of common plants, insects, birds, Study of simple ecosystems-pond, river, hill slopes, etc. (Field work Equal to 5 Lecture hours)
FIFTH SEMESTER (COMPUTER SCIENCE & ENGINEERING)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CPE-301</td>
<td>Theory of Computation</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>2.</td>
<td>CPE-302</td>
<td>Database Management System</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>3.</td>
<td>CPE-303</td>
<td>Algorithm Analysis & Design</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>4.</td>
<td>CPE-304</td>
<td>Java Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>5.</td>
<td>Elective – II*</td>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>6.</td>
<td>CPE-350</td>
<td>IT Workshop</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2.0</td>
</tr>
<tr>
<td>7.</td>
<td>CPE-352</td>
<td>Database Management System Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>8.</td>
<td>CPE-353</td>
<td>Algorithm Analysis & Design Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>9.</td>
<td>CPE-354</td>
<td>Java Programming Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>10.</td>
<td>STG-351</td>
<td>Summer Training **</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.0</td>
</tr>
<tr>
<td>11.</td>
<td>***</td>
<td>Drug Abuse: Problem, Management And Prevention (Qualifying Course)</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Total Contact Hours = 29

ELECTIVE SUBJECTS – II*

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CPE-305</td>
<td>System Simulation & Modeling</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>2.</td>
<td>CPE-306</td>
<td>Multimedia Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>3.</td>
<td>MBA-5011</td>
<td>Foundation of Financial Accounting</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

*Choose any one from the list. Elective under Massive Open Online Courses (MOOCS) available on SWAYAM platform of Govt. of India offered through online mode. The subjects which students can opt from MOOCS will be notified by the department semester wise time to time.

CPE-350, CPE-352, CPE-353 and CPE-354 are practical papers only. There will not be any theory examination for these papers.

** Summer Training will be of 4 to 6 weeks duration in Industry / In House.

*** In addition to above mentioned subjects, there will be an additional course on 'Drug Abuse: Problem, Management and Prevention' as a qualifying subject
General Instructions to the Paper Setters

(Common for B.Tech. in Computer Science & Engineering, Electronics and Communication Engineering, Mechanical Engineering, Civil Engineering and Integrated B.Tech/MBA Branches)

<table>
<thead>
<tr>
<th>Pattern of Question Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME ALLOWED: 3 Hour</td>
</tr>
<tr>
<td>Bachelor of Technology (Branch) Section: …………</td>
</tr>
<tr>
<td>End Semester Exam</td>
</tr>
</tbody>
</table>

Maximum Marks: 50

Pass Marks : 20

Note:- Section C is compulsory. Attempt any six questions selection three questions from each section A & B.

Section-A (From Section A of the syllabus)

Q1. ...
Q2. ...
Q3. ...
Q4. ... 3x5
Q5. ...

Section-B (From Section B of the syllabus)

Q6. ...
Q7. ...
Q8. ...
Q9. ... 3x5
Q10. ...

Section-C (From whole syllabus)

Q11
a) ...
b) ...
c) ...
d) ...
e) ...
f) ...
g) ...
h) ...
i) ...
j) ... 10x2=20

Note for the paper setter:

1. Total numbers of questions to be set are Eleven (11) as per the above format.
2. There will be five questions in each of the Sections A and B. Each question will be of five (05) marks. However, a question may be segregated into subparts. Candidates will be required to attempt SIX questions by selecting three Questions from each of the Sections A & B.
3. Section C is compulsory and contains ten (10) sub-parts each of two (2) marks.
4. The maximum limit on numerical problems to be set in the paper is 35%.
5. The paper setter shall provide detailed marking instructions and solutions to numerical problems for evaluation purpose in the separate white envelopes provided for solutions.
6. The paper setters should seal the internal & external envelope properly with signatures & cello tape at proper place.
7. Log tables, charts, graphs, Design data tables etc. should be specified, whenever needed.
8. Use of non-programmable calculator if required should be clearly specified.
CPE-301 THEORY OF COMPUTATION

Course Objective:
- The goal of this course is to provide students with an understanding of basic concepts in the theory of computation.
- To construct finite state machines and the equivalent regular expressions.
- To prove the equivalence of languages described by finite state machines and regular expressions.
- To construct pushdown automata, Turing machine and the equivalent context free grammars.
- To prove the equivalence of languages described by pushdown automata and context free grammars.

SECTION-A

Sets, Relations and Languages: Sets, Relations and functions, finite and infinite sets, Closures and algorithms, alphabets and languages

Finite Automata: Deterministic Finite Automata (DFA), Non Deterministic Finite Automata (N DFA), Moore and Mealy Machine, Application of finite automata, Conversion of NDFA to DFA, Mealy to Moore and Moore to Mealy

Grammar: Definition of Grammars, Derivation & Language generated by Grammars, Chomsky Classification of Languages

Regular Expression and Languages: Regular expression, finite Automata and Regular expression, Properties of Regular Languages, Pumping lemma for regular languages, application of pumping lemma, Closure properties of regular languages, Minimization of finite Automata.

SECTION-B

Context free Grammar and Languages: Context free grammar: Parse Trees, Ambiguity in Grammar and Languages, Construction of Reduced Grammars

Properties of Context free languages – Normal forms for context free grammars, Chomsky Normal Form (CNF), Greibach Normal Form (GNF)

Turing Machines: Definition of Turing Machine, Application of Turing Machine in language accepting and computing.

Recommended Books:

CPE-302 DATABASE MANAGEMENT SYSTEM

Course Objectives:

- To understand the different issues involved in the design and implementation of a database system.
- To study the physical and logical database designs, database modeling, relational, hierarchical, and network models.
- To understand and use data manipulation language to query, update, and manage a database.
- To develop an understanding of essential DBMS concepts such as: database security, integrity, concurrency.
- To design and build a simple database system and demonstrate competence with the fundamental tasks involved with modeling, designing, and implementing a DBMS.

SECTION-A

Introduction to Database Concepts: Difference between Database and non database system, Data independence, DBMS Architecture, components of a database system, Advantages and disadvantages of Database system, Intended Uses of a DBMS, Schemas, and Instances, Database Languages and Interfaces, Classification of Database Management Systems.

Data Models: Relational Model, Network Model, Hierarchical Model, ER Model: Design, issues, Mapping constraints, keys, ER diagram, weak entity sets, extended ER features, Design of an ER Database schema, Reduction of an ER Schema to tables, Comparison of Models.

Query Processing: in Relation Algebra: Fundamental and Additional Relational Algebra operators. Relational Calculus: Tuple and Domain Relational Calculus.

Relational Query Languages: SQL: Basic SQL Select Statements. Table Creation and Management: Create, Alter, Drop and Rename. Constraints: Primary key, Foreign key, Unique, Not null and Check. Data Manipulation: Insert, Update and Delete. Restricting rows in Select using Where clause, Comparison operators, Logical Operators, Order by clause.

SECTION-B

Database Design: Integrity Constraints: Domain constraints, Referential integrity, entity integrity, specify these constraints in SQL, specification of Additional Constraints as assertions and triggers.

Functional dependencies: Functional dependencies, Decomposition, Normalization using FD’s MVD’s and JD’s Domain key normal form.

Recommended Books:
3. An introduction to database system by C.J.Date (Addison Welsey, Publishing house).
4. Bipin Desai, Database System, TMG
5. Prateek Bhatia, Database Management system, Kalayani Publishers
CPE-303 ALGORITHM ANALYSIS & DESIGN

L T P Cr
3 0 0 3.0

Course Objectives:
- Analyze the asymptotic performance of algorithms.
- Write rigorous correctness proofs for algorithms.
- Demonstrate a familiarity with major algorithms and data structures.
- Apply important algorithmic design paradigms and methods of analysis.
- Synthesize efficient algorithms in common engineering design situations.

SECTION -A

Introduction: Algorithm, analyzing algorithms, internal and external sorting, sets, graphs, stacks, queues, trees, heaps, graphs, hashing.

Divide and Conquer: General method, binary search, Min-max problem, Merge sort, Quick sort, Strassen’s matrix multiplication.

Greedy Method: General Method, Job sequencing with deadlines, Knapsack problem, minimum spanning trees, single source shortest paths.

SECTION -B

Dynamic Programming: General Method multistage graphs, Optimal Binary search tree, All pairs shortest path, traveling salesman problem.

Backtracking: 8 queens problem, sum of subsets, graph coloring, knapsack problem.

Branch & Bound Method, 0/1 Knapsack problem, Traveling salesman problem.

Lower Bound Theory: Lower bound technique, Comparison trees for sorting and searching, some lower bound on parallel computation.

Problem classes: P, NP, NP-hard & NP-complete, deterministic and non- deterministic polynomial time algorithm.

Recommended Books:
CPE-304 JAVA PROGRAMMING

Course Objectives:

- The model of object oriented programming: abstract data types, encapsulation, inheritance and polymorphism
- Fundamental features of an object oriented language like Java: object classes and interfaces, exceptions and libraries of object collections
- How to take the statement of a business problem and from this determine suitable logic for solving the problem; then be able to proceed to code that logic as a program written in Java.
- How to test, document and prepare a professional looking package for each business project using javadoc.

SECTION-A

Introduction to Java: Features of Java, difference between Java and C++, JVM, Bytecode, data types, Wrapper types, variables, arrays, operators-arithmetic, bit-wise, relational, Boolean, various control statements.

Introduction to Classes: Class fundamentals, declaring objects, methods, constructors, garbage collection, passing parameters to methods, recursion.

Inheritance: types of inheritance, Access Modifiers (Private, Public, Protected, Default), Polymorphism (Overloading, Overriding, Super & This Keyword), Final Variable, Final Classes & Methods, Static variable Static method, Abstract methods and classes, Packages and interfaces, importing packages.

Exception Handling: Exception types, try, catch, finally, throw and throws, creating exception subclasses.

SECTION-B

Multithreading: Multithread programming, thread priorities, synchronisation, interthread communication, Thread class methods, runnable interface,

I/O: Input/Output, streams, reading and writing console input/output, reading and writing files,

Applets and Graphics: Applet fundamentals; Applet class; Applet initialization and termination; event handling; keyboard and mouse events; AWT class; Layout managers; panels; canvases; Frame windows; drawing lines, rectangles, ellipses.

JDBC programming: Commonly used classes and interfaces of java.sql package, connecting java application to a database, prepared statements.

Recommended Books:

2. Herbert Schildt The Complete Reference Java2, TMH
CPE-350 IT WORKSHOP

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2.0</td>
</tr>
</tbody>
</table>

List of Experiments:

Following experiments to be conducted using Sci Labs / MATLAB

1. Introduction to Matlab.
2. Use of help command to get help about different inbuilt functions.
3. Write a program to show the output of various unary and binary operators.
4. If \(x = [1,5,7,9,13,20,6,7,8] \), then
 a) Replace the first five elements of vector \(x \) with its maximum value.
 b) Reshape this vector into a 3 x 3 matrix.
5. If \(x=[1 4; 8 3] \), find :
 a) Inverse matrix of \(x \).
 b) Diagonal of \(x \).
 c) Sum of each column and the sum of whole matrix \(x \).
 d) Transpose of \(x \).
6. Write a MATLAB code for computing factorial of a number \(n \). Assume \(n \) is already defined.
 The code should return a scalar, not a vector.
7. Write a MATLAB program to calculate the following expression and round the answers to the nearest integer.
 \[z = 4\cos(x) + j6\sin(x) \] where \(x = \pi/4 \)
8. Write a program in M File to read three bits \(x, y, z \), then compute:
 a) \(v = (x \text{ and } y) \text{ or } z \)
 b) \(w = \neg (x \text{ or } y) \text{ and } z \)
9. Plot Sinc function, where \(\text{Sinc} (x) = \sin(x) / x \), and \(-2\pi \leq x \leq 2\pi\)
10. Write a program in M-File to read 3 x 3 Matrix, then display the diagonal of matrix as shown below:

 The Diagonal of This Matrix = []
CPE-352 DATABASE MANAGEMENT SYSTEM LAB

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

OBJECTIVE:-

The students are required to do exercises / projects in database design like:

1. Creation of tables, virtual tables and views in SQL,
2. Viewing the contents of data dictionary
3. Changing of schema
4. Insert, update, delete of rows tables in SQL
5. Specification of various constraints in SQL: Integrity Constraints: Domain constraints, Referential integrity, entity integrity etc
6. Specification of Additional Constraints as assertions and triggers
7. Query processing in SQL
CPE 353 ALGORITHM ANALYSIS & DESIGN LAB

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

List of Experiments

1. Write a program to sort ‘n’ numbers using merge sort. Mention the numbers of comparisons made by the program.

2. Write a program to sort ‘n’ numbers using quick sort. Mention the numbers of comparisons made by the program.

3. Write a program for stressor's matrix multiplication.

4. Write a program for knapsack problem.

5. Write a program for minimum spanning trees.

6. Write a program for single source shortest paths.

7. Write a program of traveling salesman problem.

8. Write a program for all pairs shortest paths
CPE-354 JAVA PROGRAMMING LAB

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

LIST OF PRACTICAL

1. WAP to implement constructors and overloading.
2. WAP to implement recursion, functions and arrays.
3. WAP to implement Inheritance, interfaces and packages.
4. WAP which will explain the concept of try, catch and throw.
5. WAP to demonstrate threads and animations.
6. WAP to explain I/O streams and files and socket programming.
7. WAP to implements Applets and use of it on internet.
8. WAP to describe AWT Class, Frames, Panels and Drawing.
9. WAP to demonstrate JDBC and build an application.
10. WAP to implements use of JSP.
CPE - 305 SYSTEM SIMULATION & MODELING

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Course Objectives:
- To the simulation and modeling techniques
- Provide students with opportunities to develop basic simulation and modeling skills with respect to carrying out research projects using any simulation method on the computer.

SECTION – A

SECTION-B

Design of Simulation Experiments: Problem formulation, data collection and reduction, time flow mechanism, key variables, logic flow chart, starting condition, run size, experimental design consideration, output analysis and interpretation validation, input modeling, Data collection, Assessing sample independence, Hypothesizing distribution family with data, Parameter Estimation, Goodness-of-fit tests, Selecting input models in absence of data, Output analysis for a Single system, Terminating Simulations, Steady state simulations.

Development of simulation models using simulation language studied for systems like queuing systems, Production systems, Inventory systems, maintenance and replacement systems and Investment analysis. Simulation Tools – Model Input, High level computer system simulation, CPU –Memory Simulation, Comparison of systems via simulation – Simulation Programming techniques - Development of Simulation models. Simulation programming languages – simulation suitability with characteristics, Comparison and selection of simulation languages, study of any one simulation language.

Recommended Books:
CPE - 306 MULTIMEDIA SYSTEMS

L T P Cr
3 1 0 3.5

Course Objectives:
- To acquire fundamentals principles of multimedia, including digitization and data compression for non-textual information
- To understand issues in representing, processing, and transmitting multimedia data
- To understand core multimedia technologies and standards
- To gain hands-on experience in image, sound and video editing and in some aspects of multimedia authoring (incorporating images, sound, video, and animation)
- To design, capture, store and integrate sound, images and video to deliver multimodal information.

SECTION – A

Introduction: Introduction to Multimedia, Introduction to Hypermedia and Hyper Text, Multimedia Systems and Desirable Features, Applications of Multimedia

Multimedia Storage Media: Magnetic and Optical Media, RAID and its levels, Compact Disc and its standards, DVD and its standards, other optical storage devices

SECTION – B

Audio Compression: Brief introduction to: Decibels, Microphone, Amplifier, Speakers, Digital audio specifications, Sound card, Synthesizers, Purpose of Musical Instrument Digital Interface (MIDI), Psychoacoustics, Perceptual Audio Coder, Simple Audio Compression Methods; PCM, DPCM, MPEG-1 Audio Compression, MP3, ADPCM speech coder, Multimedia System architecture, Components, Quality of service.

Reference Books
2. Ralf Steinmetz and Klara Nahrstedt, Multimedia Computing Communications and Applications By Pearson Educations
MBA 5011 FOUNDATIONS OF FINANCIAL ACCOUNTING

L T P Cr
3 1 0 3.5

Introduction to Financial Accounting

Recommended Books:

DRUG ABUSE: PROBLEM, MANAGEMENT AND PREVENTION
(FOR ALL UNDERGRADUATE COURSES)

Note: This is a compulsory qualifying paper, which the students have to study and qualify during three years of their degree course.

REGULAR STUDENTS

Max Marks: 70
Internal Assessment: 30
Total Marks 100
Max Time: 3hrs.
Lectures per week 2

INSTRUCTIONS FOR THE PAPER SETTERS
The question paper will consist of three sections A, B and C. Each of sections A and B will have four questions from the respective sections of the syllabus. Each question shall carry 7 marks. Section C will consist of 14 short answer type of 2 marks each.

INSTRUCTIONS FOR THE CANDIDATES
Candidates are required to attempt any three questions from section A and any three questions from section B. Section C is compulsory.

PRIVATE STUDENTS

Max Marks: 100
Max Time: 3hrs.
Lectures per week 2

INSTRUCTIONS FOR THE PAPER SETTERS
The question paper will consist of three sections A, B and C. Each of sections A and B will have three questions from the respective sections of the syllabus. Each question shall carry 15 marks. Section C will consist of 20 short answer type of 2 marks each.

INSTRUCTIONS FOR THE CANDIDATES
Candidates are required to attempt any two questions from section A and any two questions from section B. Section C is compulsory.

SECTION A

UNIT: I – Problem of Drug Abuse: Concept and Overview; Types of Drug Often Abused

(a) Concept and Overview
What are drugs and what constitutes Drug Abuse?; Prevalence of menace of Drug Abuse; How drug Abuse is different from Drug Dependence and Drug Addiction?; Physical and psychological dependence- concepts of drug tolerance

(b) Introduction to drugs of abuse: Short Term, Long term effects & withdrawal symptoms
Stimulants: Amphetamines, Cocaine, Nicotine
Depressants: Alcohol, Barbiturates- Nembutal, Seconal, Phenobarbital Benzodiazepines – Diazepam, Alprazolam, Flunitrazepam
Narcotics: Opium, morphine, heroin
Hallucinogens: Cannabis & derivatives (marijuana, hashish, hash oil)
Steroids Inhalants

UNIT: II – Nature of the Problem
Vulnerable Age Groups. Signs and symptoms of Drug Abuse: (a)- Physical indicators; (b)- Academic indicators; (c)- Behavioral and Psychological indicators

SECTION B

UNIT: III – Causes and Consequences of Drug Abuse

a) Causes: Physiological; Psychological; Sociological
b) Consequences of Drug Abuse: For individuals, For families; For society & Nation

Unit: IV- Management & Prevention of Drug Abuse
Management of Drug Abuse, Prevention of Drug Abuse. Role of Family, School, Media, Legislation & Deaddiction Centers

Suggested readings:
3. Ahuja, Ram,(2003), Social Problems in India, Rawat Publications: Jaipur
4. 2003 National Household Survey of Alcohol and Drug Abuse. New Delhi, Clinical Epidemiological Unit, All India Institute of Medical Sciences, 2004.

Pedagogy of the Course Work:
The pedagogy of the course work will consist of the following: 70% lectures (including expert lectures); 30% assignments, discussion and seminars and class tests.
Note: A visit to drug de-addiction centre could also be undertaken.
SIXTH SEMESTER (COMPUTER SCIENCE & ENGINEERING)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CPE-307</td>
<td>Mobile Apps Development</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>2.</td>
<td>CPE-308</td>
<td>RDBMS Using PL/SQL</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>3.</td>
<td>CPE-309</td>
<td>Machine Learning using Python</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>4.</td>
<td>CPE-310</td>
<td>Compiler Design</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>5.</td>
<td>CPE-311</td>
<td>Network Security</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Elective-III *</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>7.</td>
<td>CPE-357</td>
<td>Mobile Apps Development Lab</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2.0</td>
</tr>
<tr>
<td>8.</td>
<td>CPE-358</td>
<td>RDBMS Using PL/SQL Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>9.</td>
<td>CPE-359</td>
<td>Machine Learning using Python Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td>Open Elective**</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>17</td>
<td>2</td>
<td>8</td>
<td>22</td>
</tr>
</tbody>
</table>

Total Contact Hours = 27

ELECTIVE SUBJECTS – III*

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CPE-312</td>
<td>Distributed Computing</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>2.</td>
<td>CPE-313</td>
<td>Agile Software Development</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>3.</td>
<td>CPE-314</td>
<td>Computer Animation</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>4.</td>
<td>MBA-5012</td>
<td>Foundations of Managerial Accounting</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

*Choose any one from the list. Elective under Massive Open Online Courses (MOOCS) available on SWAYAM platform of Govt. of India offered through online mode. The subjects which students can opt from MOOCS will be notified by the department semester wise time to time.

OPEN ELECTIVE FOR SIXTH SEMESTER (Offered By Computer Sc. & Engg.)**

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CPE-357</td>
<td>Essentials of Computers (To other departments of the University)</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

CPE-357, CPE-358 and CPE-359 are practical papers only. There will not be any theory examination for these papers.

** In addition to above mentioned subjects, there will be an additional 'Open Elective' course as a qualifying subject. The student can opt any one 'Open Elective' subject from the list of Punjabi University approved open elective courses, offered by various University departments, with the consent of ACD/Head/Course Mentor of CSE department.
General Instructions to the Paper Setters

(Common for B.Tech. in Computer Science & Engineering, Electronics and Communication Engineering, Mechanical Engineering, Civil Engineering and Integrated B.Tech/MBA Branches)

Pattern of Question Paper

TITLE OF SUBJECT (CODE----)
Bachelor of Technology (Branch) Section: ………..
End Semester Exam

TIME ALLOWED: 3 Hour
Roll. No………….
Maximum Marks: 50
Pass Marks : 20

Note:- Section C is compulsory. Attempt any six questions selection three questions from each section A & B.

Section-A (From Section A of the syllabus)
Q1. ...
Q2. ...
Q3. ...
Q4. ... 3x5
Q5..

Section-B (From Section B of the syllabus)
Q6. ...
Q7. ...
Q8. ...
Q9. ... 3x5
Q10...

Section-C (From whole syllabus)
Q11
a)..
b)..
c)..
d)..
e)..
f)..
g)..
h)..
i)..
j).. 10x2=20

Note for the paper setter:
1. Total numbers of questions to be set are Eleven (11) as per the above format.
2. There will be five questions in each of the Sections A and B. Each question will be of five (05) marks. However, a question may be segregated into subparts. Candidates will be required to attempt SIX questions by selecting three Questions from each of the Sections A & B.
3. Section C is compulsory and contains ten (10) sub-parts each of two (2) marks.
4. The maximum limit on numerical problems to be set in the paper is 35%.
5. The paper setter shall provide detailed marking instructions and solutions to numerical problems for evaluation purpose in the separate white envelopes provided for solutions.
6. The paper setters should seal the internal & external envelope properly with signatures & cello tape at proper place.
7. Log tables, charts, graphs, Design data tables etc. should be specified, whenever needed.
8. Use of non-programmable calculator if required should be clearly specified.
Course Objectives:

- Describe those aspects of mobile programming that make it unique from programming for other platforms,
- Critique mobile applications on their design pros and cons,
- Utilize rapid prototyping techniques to design and develop sophisticated mobile interfaces,
- Program mobile applications for the Android operating system that use basic and advanced phone features, and
- Deploy applications to the Android marketplace for distribution.

SECTION - A

Getting started with Mobility: Mobility landscape, Mobile platforms, Mobile apps development, Overview of Android platform, setting up the mobile app development environment along with an emulator, a case study on Mobile app development

Building blocks of mobile apps: App user interface designing – mobile UI resources (Layout, UI elements, Draw-able, Menu), Activity- states and life cycle, interaction amongst activities.

App functionality beyond user interface - Threads, Async task, Services – states and life cycle, Notifications, Broadcast receivers, Telephony and SMS APIs

SECTION – B

Native data handling – on-device file I/O, shared preferences, mobile databases such as SQLite, and enterprise data access (via Internet/Intranet)

Testing mobile apps: Debugging mobile apps, White box testing, Black box testing, and test automation of mobile apps, JUnit for Android, Robotium, MonkeyTalk

Taking apps to Market: Versioning, signing and packaging mobile apps, distributing apps on mobile marketplace

Recommended Books:

CPE-308 RDBMS USING PL/SQL

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Course Objectives:
- Describe basic concepts of database system
- Design a data model and schemas in RDBMS
- Use RDBMS for developing industry applications
- Be competent in use of PL/SQL
- Implement transactions, concurrency control, and be able to do Database recovery.

SECTION-A

Introduction of DBMS:
DBMS architecture, Enhanced-ER (EER) Model Concepts: Specialization and Generalization, Union type, Constraints on Specialization and Generalization, Concept of Hierarchy and Lattice, EER-to-Relational Mapping.

Distributed Databases and Client-Server Architecture: Introduction to Distributed DBMS Concepts, Client-Server Architecture Overview, Data Fragmentation, Replication, and Allocation Techniques for Distributed Database Design, Types of Distributed Database Systems.

Packages: Specification and Body, Triggers and its types. Introduction to Objects: Creating, Storing and Manipulating Objects.

SECTION-B

Transaction processing: Introduction, Concurrency, Problems due to concurrency, ACID Properties, Schedule, Serializability. Serial, Non-serial and Conflict-Serializable Schedule

Big Data: Types of data, elements, role of parallel and distributed computing

Recommended Books:
4. Bipin Desai, Database System, TMG
5. Prateek Bhatia, Database Management system, Kalyani Publishers
CPE-309 MACHINE LEARNING USING PYTHON

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Course Objectives:
- To understand the fundamentals of Cryptography
- To acquire knowledge on standard algorithms used to provide confidentiality, integrity and authenticity.
- To understand the various key distribution and management schemes.
- To understand how to deploy encryption techniques to secure data in transit across data networks.
- To design security applications in the field of Information technology.

SECTION – A

Introduction to Python: The Python Interpreter, Data Structures - Tuple, List, Dictionary and Set, Functions, Lambda Functions, Loops and Flow Control Structures, Exception Handling.

NumPybasics: Creating ndarray, Arithmetic with Numpy Arrays, Basic Indexing, Slicing, Boolean Indexing, Vectors and Matrices, Solving a Linear System.

Pandas: DataFrame, Data Loading, Indexing, Selection, Filtering, Data Alignment, Sorting, Ranking, Function – apply, Joins.

Visualization: Matplotlib, Figures and Subplots, Line Chart, Scatter Chart, Histogram.

Scipy: Gaussian pdf and cdf, Sampling Gaussian Distribution, Sampling General Multivariate Normal Distribution, Introduction to Basic Scipy Functions.

SECTION – B

Introduction to Machine Learning: Applications, Supervised and Unsupervised Learning, Model Representation, Hypothesis function, Cost Function, Linear and Logistic Regression.

Neural Networks: Model Representation, Back propagation algorithm, Gradient Checking, Gradient Descent, Multiclass Classification.

Optimization: Overfitting, Regularization and Bias, Precision and Recall, Random Initialization.

Recommended Books
Course Objectives:
- To understand the theory and practice of compiler implementation.
- To learn finite state machines and lexical scanning.
- To learn context free grammars, compiler parsing techniques, construction of abstract syntax trees, symbol tables, intermediate machine representations and actual code generation.

SECTION-A

Introduction To Compiling:

SECTION-B

Intermediate Code Generation: Intermediate languages – Graphical representation, Three-address code, Implementation of three address statements (Quadruples, Triples, Indirect triples). Short Circuit Code, Back patching.

Recommended Books:

CPE-311 NETWORK SECURITY

Course Objectives:
- To understand the fundamentals of Cryptography
- To acquire knowledge on standard algorithms used to provide confidentiality, integrity and authenticity.
- To understand the various key distribution and management schemes.
- To understand how to deploy encryption techniques to secure data in transit across data networks.
- To design security applications in the field of Information technology.

SECTION-A

Basic Encryption And Decryption: Attackers and Types of threats, challenges for information security, Encryption Techniques, Classical Cryptographic Algorithms: Monoalphabetic Substitutions such as the Caesar Cipher, Cryptanalysis of Monoalphabetic ciphers, Polyalphabetic Ciphers such as Vigenere, Vernam Cipher, Stream and Block Ciphers.

SECTION-B

Hash Algorithms: Hash Algorithms, Message Digest Algorithms such as MD4 and MD5, Secure Hash Algorithms such as SH1 and SHA2.

Network Security: Network Security Issues such as Impersonation, Message Confidentiality, Message Integrity, Code Integrity, Denial of Service, Firewalls, DMZs, Virtual Private Networks, Network Monitoring and Diagnostic Devices.

Web Security: Web Servers, Secure Electronic Mail, Enhanced Email, Pretty Good Privacy, Public Key Cryptography Standards

Ethical Hacking: Introduction to Ethical Hacking, Terminology, Hackers, Crackers, and Other Related Terms, Hactivism, Threats, Hacking History, Ethical Hacking Objectives and Motivations.

Recommended Books:
1. Principles of Cryptography, William Stallings, Pearson Education
LIST OF PRACTICLEs

1) Create an application that display "Hello word".

2) Create an application using the concept of "Screen Orientation".

3) Create an application using Date Picker UI Widget.

4) Create an application with the use of Button.

5) Developing an application with the use of ProgressBar.

6) Create an application with the use of Intents.

7) Developing an application with the use of RadioButton.

8) Developing an application with the use of CheckBoxes.

9) Creation of Option Menus in application.

10) Developing an application with the use of Fragments.

11) Developing an application with the use of Telephony Services.

12) Use of Web View during the creation of application.
LIST OF PRACTICE

1. Write a PL/SQL code to print first 50 even numbers. Also insert the list in Temp table. Temp table contains only one column of number data type.

2. Using the conditional controls and case statement in PL/SQL, execute the following queries:
 a. Calculate the average salary from table ‘Employee’ and print “Increase the salary” if the average salary is less than Rs. 10,000.
 b. Print the deptno from the ‘Employee’ table using the case statement; if the deptname is ‘Technical’ then deptno is 1, if the deptname is ‘HR’ then the deptno is 2 else deptno is 3.

3. Write a PL/SQL code to insert all the details of employee no. 7698 to a new table which has the same structure as emp table.

4. Write a PL/SQL code to update the commission of the employee number 7369 to Rs. 300, if it is null; else raise his commission by 25%.

5. Declare records to hold employee detail and department information. Write a program that displays total salary including commission of empno 7369. It should also display employee name, his department details and his old and new salary.

6. Write a PL/SQL code to load the employee names and salaries into PL/SQL table and then display the contents of the table.

7. Using cursors display the details of all those employees from EMP table whose sum of salary and commission is more than Rs. 3000.

8. Create a procedure by the name INCR to increase the salary of an employee. The employee number and the amount to be incremented is passed as parameters.

9. Write a user defined function TCASE to display all the employee names in title case. Execute a SQL statement using the function TCASE to show the employee name and job.

10. Write a trigger total_salary to maintain a derived column totsal that stores the total salary of all members in a department.

11. Create an INSTEAD_OF trigger on view V1 which contains columns DNAME, ENAME and SALARY from tables Dept and Emp joined on the basis of DEPTNO. If salary on an Employee is updated in the view, it should be updated in the EMP table.

12. Write a PL/SQL program (which includes declaration section, executable section and exception handling section) such that:
 a) Student marks can be selected from the table and printed for those who secured first class and an exception can be raised if no records were found.
 b) Insert data into student table and use COMMIT, ROLLBACK and SAVEPOINT in PL/SQL block.
List of Experiment

1. Write a program to calculate the average of numbers in a given list.
2. Write a program to remove duplicate items from the list.
3. Write a program to detect if two strings are anagrams?
4. Write a program to sum all the items in a dictionary.
5. Write a program to map two lists into a dictionary.
6. Write a program to count number of vowels in string using sets.
7. Write a program to extract data from a csv and excel file.
8. Write a program to select columns and rows in from a dataframe.
9. Write a program to plot a scatter graph for the data contained in two lists.
10. Given a set of houses with certain size and price, write a machine learning program to predict the price of a new house.
CPE – 312 DISTRIBUTED COMPUTING

Course Objectives:
- The differences among: concurrent, networked, distributed, and mobile.
- Resource allocation and deadlock detection and avoidance techniques.
- Remote procedure calls.
- IPC mechanisms in distributed systems.

SECTION-A
Coordination, synchronization & consistency: Logical clocks, Physical clocks, mutual exclusion, election algorithms, atomic broadcast, sequential consistency transaction distributed consensus, Threads: Thread synchronization, implementation issues, and threads vs. RPC.
Models of distributed computing: Client - Server Architectures : Challenges, Design, Methodology, Intranets and Groupware. Group models and peer to peer: Groups for service replication/ reliability, groups for parallelism / performance, client/ server vs. peer-to-peer, multicast.

SECTION-B
Distributed multimedia system: Introduction, characteristics, and resource management stream adaptation
Fault tolerant distributed systems: Introduction, dependability, faults vs. errors vs. failure, space time and value redundancy, fault tolerant architecture, failure detection algorithms, partitioning, FT consensus.
Security techniques, cryptographic algorithms, authentication and access control.

Recommended Books:
3. Distributed Computing, Principles and applications, M.L.Liu, Pearson Education.
CPE – 313

AGILE SOFTWARE DEVELOPMENT

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Course Objectives

- Examine the common agile development practices and methods, including XP and Scrum.
- Carry out all stages of an agile software process in a team, to produce working software
- Continually negotiate project requirements during an ongoing Scrum project
- Provide practical knowledge of how to manage a project using Scrum framework.
- Use test-driven development to ensure software quality
- Utilize CASE tools during the software development process

SECTION - A

Agile Scrum Framework: Introduction to Scrum, Project phases, Agile Estimation, Planning game, Product backlog, Sprint backlog, Iteration planning, User story definition, Characteristics and content of user stories, Acceptance tests and Verifying stories, Project velocity, Burn down chart, Sprint planning and retrospective, Daily scrum, Scrum roles – Product Owner, Scrum Master, Scrum Team, Scrum case study, Tools for Agile project management

Agile Testing: The Agile lifecycle and its impact on testing, Test-Driven Development (TDD), xUnit framework and tools for TDD, Testing user stories - acceptance tests and scenarios, Planning and managing testing cycle, Exploratory testing, Risk based testing, Regression tests, Test Automation, Tools to support the Agile tester

SECTION – B

Industry Trends: Market scenario and adoption of Agile, Agile ALM, Roles in an Agile project, Agile applicability, Agile in Distributed teams, Business benefits, Challenges in Agile, Risks and Mitigation, Agile projects on Cloud, Balancing Agility with Discipline, Agile rapid development technologies

Recommended Books:

1. Bart Jacob, Michael Brown, Kentarofukui, Nihar Trivedi – Introduction to Grid Computing (IBM Red Book) 2005
CPE – 314 COMPUTER ANIMATIONS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Course Objectives:
- Use animation software in the production of animated works.
- Study the history of animation.
- Study the concepts of storyboarding, lip-synching, spacing and timing.
- Approach assignments as problem-solving activities.

SECTION - A

Introduction Animation: Its definition, Principles of Animation, early examples of Animation, Animation by Computer.

History of Animation: Stop Motion Photo Animation, Zoetrope, Thaumatrope, Cel and Paper Animation, early Disney’s Cel Animation Processes.

Types of Animation: Animation Techniques, File formats for Animation, Cel Animation, Stop Motion Animation, 2-D Animation, 3-D Animation.

SECTION – B

Keyframe Animation: Creating Keyframes, Auto Keyframes, Move & Scale Keyframe on the timeline, Animating with constraints & simple controllers, animation Modifiers & complex controllers, function curves in the track view, motion mixer.

Multimedia presentation and authoring: Overview, multimedia authoring metaphor, multimedia production, presentation and automatic authoring, Design paradigms and user interface, overview of tools like adobe premiere, director, flash and Dreamweaver.

Recommended Books:

1. NewRiders, “3dsmax7 Fundamentals”, BPB, 2005
3. The Encyclopedia of Animation Techniques, Richard Taylor, 1996 (India)
MBA 5012 FOUNDATIONS OF MANAGERIAL ACCOUNTING

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Recommended Books:

OPEN ELECTIVE: ESSENTIALS OF COMPUTERS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Prerequisites: none

Objectives: Thorough understanding of Computer Basics and Information Technology.

Instructions for paper-setter: The question paper will consist of three sections A, B and C. Each section A and B will have five questions from the respective sections of the syllabus (05 marks each). Section C will have one question with 10 short answer objective type parts (02 marks each), which will cover the entire syllabus uniformly.

Instructions for candidates: Candidates are required to attempt seven questions selecting three questions each from sections A and B of the question paper and the entire section C.

Section A

Introduction to computer: Characteristics of computers, Basic applications of computer, Components of computer system, Classifications of computers, Concepts of hardware/software, data/Information, basic data types, and storage of data/Information as files.

Elements of Word Processing: An Introduction to Word processing, Opening and closing documents, Using the Page setup, Menu bar and Help option, Printing of documents, Display/Hiding of paragraph marks and inter word space, Scrolling, Text creation and manipulation, Formatting the text, Handling multiple documents, Table manipulation.

Section B

Spread Sheet: Elements of Electronics Spread Sheet, Manipulation of cells, Providing Formulas, Spread sheets for Small accountings.

Computer Communication and Internet: Basic of Computer networks, Internet, Service on Inter Net: WWW and web-sites, Electronic mails, Communication on Internet.

WWW and Web Browsers: Web browsing software, Surfing the Internet, Chatting on Internet.

Email: Basic of electronic mail, Using e-mails, Document handling.

Making Presentations: Basics, Creation of presentation, Preparation of slides, Providing aesthetics, Slide manipulation and Slide show, Presentation of the slides.

Reference Books:

1. Guy Hart-Davis "The ABCs of Microsoft Office Professional edition", BPB Publications,
SEVENTH SEMESTER (COMPUTER SCIENCE & ENGINEERING)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CPE-401</td>
<td>Cloud Computing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.</td>
<td>CPE-402</td>
<td>Internet of Things</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>3.</td>
<td>CPE-403</td>
<td>Data Mining & Warehousing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>4.</td>
<td>CPE-404</td>
<td>Information Security and Cyber Law</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Elective- IV *</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>6.</td>
<td>CPE-450</td>
<td>Project Work</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>3.0</td>
</tr>
<tr>
<td>7.</td>
<td>CPE-453</td>
<td>Data Mining & Warehousing Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>8.</td>
<td>CPE-454</td>
<td>Information Security and Cyber Law Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15</td>
<td>2</td>
<td>10</td>
<td>21</td>
</tr>
</tbody>
</table>

Total Contact Hours = 27

ELECTIVE SUBJECTS – IV*

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject Code</th>
<th>Subject Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CPE-405</td>
<td>Neural Computing</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>2.</td>
<td>CPE-406</td>
<td>Digital Image Processing</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>3.</td>
<td>CPE-407</td>
<td>Embedded System</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>4.</td>
<td>CPE-408</td>
<td>Artificial Intelligence</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>5.</td>
<td>MBA-5013</td>
<td>Foundation of Finance</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
<tr>
<td>6.</td>
<td>MBA-5033</td>
<td>Foundation of International Business</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

*Choose any one from the list. Elective under Massive Open Online Courses (MOOCS) available on SWAYAM platform of Govt. of India offered through online mode. The subjects which students can opt from MOOCS will be notified by the department semester wise time to time

CPE-450, CPE-453 and CPE-454 are practical papers only. There will not be any theory examination for these papers.
Department of Computer Science & Engineering
Punjabi University, Patiala.

General Instructions to the Paper Setters
(Common for B.Tech. in Computer Science & Engineering, Electronics and Communication Engineering, Mechanical Engineering, Civil Engineering and Integrated B.Tech/MBA Branches)

<table>
<thead>
<tr>
<th>Pattern of Question Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE OF SUBJECT (CODE----)</td>
</tr>
<tr>
<td>Bachelor of Technology (Branch) Section: ………..</td>
</tr>
<tr>
<td>End Semester Exam</td>
</tr>
</tbody>
</table>

TIME ALLOWED: 3 Hour
Roll. No…………..
Maximum Marks: 50
Pass Marks : 20

Note:- Section C is compulsory. Attempt any six questions selection three questions from each section A & B.

Section-A (From Section A of the syllabus)

Q1. ...
Q2. ...
Q3. ...
Q4. ...
Q5. ... 3x5

Section-B (From Section B of the syllabus)

Q6. ...
Q7. ...
Q8. ...
Q9. ... 3x5
Q10...

Section-C (From whole syllabus)

Q11
a)...
b)...
c)...
d)...
e)...
f)...
g)...
h)...
i)...
j)...
 10x2=20

Note for the paper setter:
1. Total numbers of questions to be set are Eleven (11) as per the above format.
2. There will be five questions in each of the Sections A and B. Each question will be of five (05) marks. However, a question may be segregated into subparts. Candidates will be required to attempt SIX questions by selecting three Questions from each of the Sections A & B.
3. Section C is compulsory and contains ten (10) sub-parts each of two (2) marks.
4. The maximum limit on numerical problems to be set in the paper is 35%.
5. The paper setter shall provide detailed marking instructions and solutions to numerical problems for evaluation purpose in the separate white envelopes provided for solutions.
6. The paper setters should seal the internal & external envelope properly with signatures & cello tape at proper place.
7. Log tables, charts, graphs, Design data tables etc. should be specified, whenever needed.
8. Use of non-programmable calculator if required should be clearly specified.
CPE 401 CLOUD COMPUTING

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Course Objectives:
- To learn how to use Cloud Services.
- To implement Virtualization
- To implement Task Scheduling algorithms.
- Apply Map-Reduce concept to applications.
- To build Private Cloud.
- Broadly educate to know the impact of engineering on legal and societal issues involved.

SECTION-A

Cloud Computing Architecture- Cloud computing stack: Comparison with traditional computing architecture (client/server), Services provided at various levels, How Cloud Computing Works, Role of Networks in Cloud computing, protocols used, Role of Web services; Service Models (XaaS), Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Deployment Models: Public cloud, Private cloud, Hybrid cloud, Community cloud

Service Management in Cloud Computing: Service Level Agreements (SLAs), Billing and Accounting, Comparing Scaling Hardware: Traditional vs. Cloud, Economics of scaling: Benefitting Enormously, Managing Data: Looking at Data, Scalability & Cloud Services, Database & Data Stores in Cloud, Large Scale Data Processing.

Cloud Security- Infrastructure Security, Network level security, Host level security, Application level security, Data security and Storage, Data privacy and security Issues, Jurisdictional issues raised by Data location, Identity & Access Management, Access Control, Trust, Reputation, Risk Authentication in cloud computing, Client access in cloud, Cloud contracting Model, Commercial and business considerations

SECTION-B

Introduction to Big Data- Distributed file system–Big Data and its importance, Four Vs, Drivers for Big data, Big data analytics, Big data applications. Algorithms using map reduce.

Introduction to Hadoop and Hadoop Architecture: Data – Apache Hadoop & Hadoop EcoSystem, Moving Data in and out of Hadoop – Understanding inputs and outputs of MapReduce -Data Serialization

NoSQL- What is it?, Where It is Used Types of NoSQL databases, Why NoSQL?, Advantages of NoSQL, Use of NoSQL in Industry, SQL vs NoSQL, NewSQL

Data Base for the Modern Web- Introduction to MongoDB key features, Core Server tools, MongoDB through the JavaScript’s Shell, Creating and Querying through Indexes, Document-Oriented, principles of schema design, Constructing queries on Databases, collections and Documents , MongoDB Query Language.

Recommended Books
7. BIG Data and Analytics , Sima Acharya, Subhashini Chhellappan, Willey
CPE-402 INTERNET OF THINGS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Course Objectives:
- Able to understand the application areas of IOT
- Able to realize the revolution of Internet in Mobile Devices, Cloud & Sensor Networks
- Able to understand building blocks of Internet of Things and characteristics.

SECTION-A

M2M and IoT Technology Fundamentals: Devices and gateways, Local and wide area networking, Data management, Business processes in IoT, Everything as a Service(XaaS), M2M and IoT Analytics, Knowledge Management

IoT Reference Architecture: Introduction to IoT architecture, State of art, Functional View, Information View, Deployment and Operational View, Other Relevant architectural views.

SECTION-B

Industrial Automation: Service-oriented architecture-based device integration, SOCRADES: realizing the enterprise integrated Web of Things, IMC-AESOP: from the Web of Things to the Cloud of Things

References:

CPE-403 DATA MINING & WAREHOUSING

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Course Objectives:
- To introduce students to the basic concepts and techniques of Data Mining
- To develop skills of using recent data mining software for solving practical problems.
- To gain experience of doing independent study and research.
- To study the methodology of engineering legacy databases for data warehousing and data mining to derive business rules for decision support systems.
- Develop and apply critical thinking, problem-solving, and decision-making skills.
- Develop and apply enthusiasm for learning. Class participation is encouraged in this course.

Enriching

SECTION-A

Introduction: Introduction to RDBMS, data warehouse, transactional databases, data mining functionalities, classification of data mining system, major issues in data mining

Data Preprocessing: Data Cleaning, Data Integration and Transformation, Data Reduction, Discretization and Concept Hierarchy Generation

Data Warehouse And OLAP: Need for Data Warehousing, Difference from Traditional Databases, Data Warehouse Architecture, Multidimensional Data Model, Schemas for Multi-Dimensional Model: Star, Snowflake & Fact Constellation, OLAP Operations, Types Of OLAP Servers: ROLAP Versus MOLAP Versus HOLAP.

Introduction to Data Mining: Basics of data mining, Data mining techniques, KDP (Knowledge Discovery Process), Application and Challenges of Data Mining, Security Issue, Privacy Issue.

SECTION-B

Mining Association Rules in Large Databases: Association Rule Mining, Apriori Algorithm, Fp-Growth Algorithm, latest trends in association rules mining.

Classification and Clustering: classification and prediction, issues regarding classification and prediction, decision tree induction algorithm, rule based classification: using if-then rules for classification, prediction: linear & non linear regression, cluster analysis, type of data for cluster analysis, introduction to Categorization of Major Clustering Methods, Classical Partitioning Method: k-Means.

Introduction to Mining Complex Types of Data: Complex data objects, Mining spatial databases, Multimedia databases, Time Series and sequence databases, Text databases and World Wide Web.

BOOKS RECOMMENDED
CPE-404 INFORMATION SECURITY & CYBER LAW

Course Objectives:
- To provide an understanding of computer forensics fundamentals
- To analyze various computer forensics technologies
- To provide computer forensics systems
- To identify methods for data recovery.
- To apply the methods for preservation of digital evidence.

SECTION-A

Introduction to Internet, Cyber Space and threats, Computer Storage, Cell Phone / Mobile Forensics, Computer Ethics and Application Programs.

Footprinting, WHOIS and DNS enumeration, network reconnaissance, Email spoofing, Email bombing, Data diddling, Denial of service attack, Virus / worm attacks - trojans and keyloggers, Internet time theft, Web jacking, Phishing-Smishing-Vishing-Identity theft, Cyber terrorism- use of encryption by terrorists, Human trafficking.

SECTION-B

The Legal Perspective – The IT Act, Challenges faced by IT Act and its amendments, Sections Under IT Act- Section 43, 65, 66, 67, 68, 69, 70. Section relevant to cyber crime under IPC (Indian Penal Code).

Ethical hacking: Need, penetration testing: Information gathering tools like nmap, vulnerability detection scanners like nessus, nexpose, information analysis and planning, attack and penetration tools like metasploit, results analysis and reporting.

Recommended Books
2. System Forensics by Ankit Fadia.
CPE 450 PROJECT WORK

L T P Cr
0 0 6 3.0

Objectives of the Project work
- Students will be able to solve problems working in group settings. This translates to the following outcomes. Students will demonstrate:
 - Knowledge of basic SW engineering methods and practices, and their appropriate application.
 - Knowledge and application of collaborative tools for SW development.
 - Successful implementation of teamwork behavior and policies in a large class project.

Students will demonstrate the ability to give presentations and write technical reports. This translates to the following outcomes. Students will:

1. Demonstrate adequate oral presentation delivery.
2. Provide adequate oral presentation content.
3. Observe presentation time limitations.
4. Provide adequate written technical content.
5. Demonstrate adequate written organization.
6. Observe good practice with regard to spelling and grammar.
CPE-453 DATA MINING & WAREHOUSING LAB

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

LIST OF EXPERIMENTS

1. Introduction to Data Mining Tools and its installation.
2. Exploring Data Mining Tool.
3. Understanding files formats supported by the tool.
4. Demonstration of preprocessing.
5. Demonstration of Association rule process on dataset using apriori algorithm.
6. Demonstration of classification rule process on dataset using id3 algorithm.
7. Demonstration of clustering rule process on dataset using simple k-means.
CPE 454 INFORMATION SECURITY & CYBER LAW LAB

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

LIST OF EXPERIMENT

1. Learn to install Kali Linux or any other Linux distribution using Virtual Box/ VM Ware or any other equivalent Virtual machine software on the Host OS.
2. To learn the basic working of different tools like Wireshark, tcpdump.
3. To capture and analyze the network traffic by using Wireshark.
4. To understand the working of Network Mapper (nmap) for security auditing.
5. To install Network Simulator(NS2) and run basic simulation using TCL.
6. To implement different Ciphers (Monoalphabetic, Caesar etc in C).
7. Implementation of different algorithms for encryption
 a) DES algorithm in C.
 b) Triple DES algorithm in C.
 c) Deffie Hellman algorithm in C.
 d) Blow fish algorithm in C.
CPE-405 NEURAL NETWORKS

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Course Objective:
- It deals with Introduction and different architectures of neural network
- It deals with the Application of Neural Networks
- It deals with Fuzzy Logic Controller
- It deals with applications of Fuzzy logic

SECTION-A

Neural networks: introduction, neural networks, supervised or unsupervised learning, feed forward network, Hopfield network.

Backpropagation: Forward back propagation network- mapping, layout, training, BPN applications.

Learning and training: objectives of learning, Hebb’s rule, delta rule, supervised learning, unsupervised networks, learning vector quantizer, associative memory models, one-shot learning, resonance, stability, training and convergence.

SECTION-B

Fuzzy Logic: Introduction, fuzzy sets, fuzzy operations, and fuzziness in neural networks, neural trained fuzzy system, BAM- bidirectional associative memory, inputs and outputs, weights and training. FAM-fuzzy

Associative memory, association, FAM neural networks, encoding

Application of fuzzy Logic: Fuzzy inference system, defuzzification.

Introduction to Neuro Fuzzy Systems Architecture of a Neuro Fuzzy Network.

Genetic Algorithm: An overview, GA in problem solving Implementation of GA and GP

Recommended Books:
3. Freeman A. James, Skapura M. David- neural networks algorithms, applications and programming.
CPE 406 DIGITAL IMAGE PROCESSING

L T P Cr
3 1 0 3.5

Course Objectives:
• Understand what MFAs do and how they work
• Understand the fundamentals of diplomatic negotiations
• Understand bilateral and multilateral diplomacy
• Understand subject-specific diplomacy
• Understand what makes a document a “treaty”
• Be aware of historical cases relevant to various diplomatic methods

SECTION-A

Image Transforms: Discrete Fourier transform, Some properties of two-dimensional Fourier transform, Fast Fourier transform, Inverse FFT.

Image Enhancement: Point Operations, Histograms, Spatial Domain methods, Frequency domain methods, Enhancement by point processing, Spatial filtering, low pass filtering, High pass filtering, Homomorphic filtering, Colour image processing.

SECTION-B

Image Compression: Coding Inter-pixel and Psycho visual redundancy, Image Compression models, Error free compression, Lossy Compression, Image Compression standards.
Image Segmentation: Detection of discontinuities, Edge linking and boundary detection, Thresholding, Region Orientation Segmentation, Motion based segmentation.

Representation and Description: Representation schemes like chain coding, Polygonal approximation, Signatures, Boundary Segments, Skeleton of region, Boundary Description, Regional descriptors, Morphology.
Recognition and Interpretation: Elements of Image Analysis, Pattern and pattern classes, Decision Theoretic methods, Structural methods, Interpretation.

Recommended Books:
CPE-407 EMBEDDED SYSTEM

Course Objectives:
• To have knowledge about the basic working of a microcontroller system and its programming in assembly language.
• To provide experience to integrate hardware and software for microcontroller applications systems.

SECTION-A

Arm Processor Architecture : Architecture, Registers, Interrupts & Vector Table, I/O Ports, ARM Processor family, JTAG, I2C bus

SECTION-B
Arm Programming Instructions: Instruction Set: Data processing instructions, Addressing modes, Load Store Instructions, PSR (Program Status Register) Instructions, Conditional Instructions, Interrupt Instructions

Real World Interfacing: LCD, ADC and sensors, stepper motor, keyboard, DAC and external memory. Introduction

Recommended Books:
1. Embedded System Design by Frank Vahid and Tony Givargus.
4. Steve Furber, —ARM system on Chip Architecture, Addision Wesley
5. Website www.arm.com
CPE-408 ARTIFICIAL INTELLIGENCE

Course Objectives:
- To have an appreciation for and understanding of both the achievements of AI and the theory underlying those achievements.
- To have an appreciation for the engineering issues underlying the design of AI systems.
- To have a basic proficiency in a traditional AI language including an ability to write simple to intermediate programs and an ability to understand code written in that language.
- To have a basic understanding of some of the more advanced topics of AI such as learning, natural language processing, agents and robotics, expert systems, and planning.

SECTION-A

Artificial Intelligence Techniques, levels of models, understand the importance, functions, advantages, as well as the limitations of artificial intelligence. Use of Artificial Intelligence and intelligent agents
State, space, search, control strategies, heuristic search, problem characteristics, production system characteristics. Mapping between facts and representations, approaches to knowledge representation, semantic sets, frame, conceptual depending, scripts, predictive logic, resolution in predicate logic

SECTION-B

Procedural Vs declarative knowledge, matching, conflict resolution, Non-monotonic reasoning, default reasoning, statistical reasoning, knowledge extraction. Investigate the roles and development methods of artificial intelligence in decision making processes. Neural network resources, cognitive science, role of neural network in computer science.

Characteristics of AI language, LISP-symbol manipulation- basic lisp function, predicated, condition, recursion, iteration, Array-lambda functions, input-output statements.
AI problems : pattern recognition, voice recognition, Feature Extraction, Architecture of EJB, creating a stateless-session EJB, statefull-session bean, Life Cycle of session beans, Entity beans, life cycle of entity beans

Recommended Books :

1. Artificial Intelligence by Rich and Kinght, TMH
5. Artificial Intelligence by Padhy, Oxford Press
MBA 5033 FOUNDATIONS OF INTERNATIONAL BUSINESS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

SCOPE:-
The Foundations of International Business course will provide students with an overall picture, theoretical principles and practices, of the international business field. It covers a wide range of topics such as the social/cultural, economic, political and legal aspects of the international business environment, the theories and institutions related to international trade and foreign investment, the world financial environment, the dynamics of international business-government relationships, and the strategies used to enter international markets.

SECTION-A

SECTION-B
Regional Economic Integration: Types of Regional Integration; Factors Influencing Regional Integration. Leading Economic Blocs. Foreign Investments: Foreign Institutional Investments (FIIs); Foreign Direct Investments (FDIs): Motives; Types; Costs and Benefits; Trends and Implications.

General Agreement on Tariffs and Trade (GATT) and Evolution of World Trade Organization (WTO); Agreements at The Uruguay Round: Plurilateral Agreements and Multilateral Agreements: Agreement on Agriculture (AOA); Trade Related Investment Measures (TRIMS); Agreement on Subsidies and Counter Availing Measures; Agreement on Trade Related Aspects of Intellectual Properties Rights (TRIPS) and General Agreement in Trade and Services (GATS). Ministerial Conferences of the WTO: Impact of WTO on Developing Countries.

Recommended Books:
MBA 5013 FOUNDATIONS OF FINANCE

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

The main goal of this course is to develop a foundation of financial management concepts. This will enable the student to understand how corporations make important investment and financing decisions, and how they establish investment policies. This course in finance describes the corporation and its operating environment; it will help any future manager to understand how the finances of a company work, and how they will be interfacing with finance

SECTION-A

SECTION-B

RECOMMENDED BOOKS:

B. TECH FOURTH YEAR
COMPUTER SCIENCE & ENGINEERING

(Batch 2017)
Session (2020-21)

SCHEME OF PAPERS

EIGHTH SEMESTER (COMPUTER SCIENCE & ENGINEERING)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title of Paper</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRJ-451</td>
<td>Project Based Industrial Training (One Semester Training in Industry)</td>
<td>20</td>
</tr>
</tbody>
</table>

Breakup of Marks:

Industrial Visit by Faculty Coordinator (150 Marks)
(Within 10—12 weeks of commencement of Training)

- Presentation : 60 Marks
- Viva Voce : 60 Marks
- Report (Hard Copy) : 30 Marks

Evaluation by Faculty Coordinator is consolation with Industrial Coordinator during industrial visit.

Evaluation by a Team of Faculty Members in the Institute (250 Marks)
(Within One Week of completion of Training)

- Presentation : 100 Marks
- Viva Voce : 100 Marks
- Report (Hard Copy) : 50 Marks

The Final Presentation and viva – voce will be conducted jointly by the faculty coordinator, external examiner and nominee of the Head to be appointed by the Head of the Department.

The Letter grade will be awarded to the students according to marks obtained by him/her out of total 400 marks.